142 research outputs found

    Usability, acceptability, and self-reported impact of an innovative hepatitis C risk reduction intervention for men have sex with men: A mixed methods study

    Get PDF
    Hepatitis C virus (HCV) elimination among men who have sex with men (MSM) is unlikely to be feasible without effective behavioural interventions. We developed a multilevel intervention to reduce HCV transmission among MSM in Amsterdam. The intervention includes a toolbox to facilitate risk reduction among MSM and support health care professionals in risk reduction counselling. To assess the use of the toolbox and its impact on behavior, we conducted a mixed-methods study. We collected data through online questionnaires (n = 49), and in-depth interviews with MSM at risk of HCV (n = 15) and health care professionals (n = 7). We found that the toolbox has been well received by MSM, increased awareness of HCV risks and has facilitated preventive behaviours and risk-reduction communication with peers. Professionals reported the toolbox to be a useful aid for discussions about HCV risk and risk reduction strategies with their clients

    4 Gy versus 24 Gy radiotherapy for follicular and marginal zone lymphoma (FoRT): long-term follow-up of a multicentre, randomised, phase 3, non-inferiority trial

    Get PDF
    BACKGROUND: The optimal radiotherapy dose for indolent non-Hodgkin lymphoma is uncertain. We aimed to compare 24 Gy in 12 fractions (representing the standard of care) with 4 Gy in two fractions (low-dose radiation). METHODS: FoRT (Follicular Radiotherapy Trial) is a randomised, multicentre, phase 3, non-inferiority trial at 43 study centres in the UK. We enrolled patients (aged >18 years) with indolent non-Hodgkin lymphoma who had histological confirmation of follicular lymphoma or marginal zone lymphoma requiring radical or palliative radiotherapy. No limit on performance status was stipulated, and previous chemotherapy or radiotherapy to another site was permitted. Radiotherapy target sites were randomly allocated (1:1) either 24 Gy in 12 fractions or 4 Gy in two fractions using minimisation and stratified by histology, treatment intent, and study centre. Randomisation was centralised through the Cancer Research UK and University College London Cancer Trials Centre. Patients, treating clinicians, and investigators were not masked to random assignments. The primary endpoint was time to local progression in the irradiated volume based on clinical and radiological evaluation and analysed on an intention-to-treat basis. The non-inferiority threshold aimed to exclude the chance that 4 Gy was more than 10% inferior to 24 Gy in terms of local control at 2 years (HR 1·37). Safety (in terms of adverse events) was analysed in patients who received any radiotherapy and who returned an adverse event form. FoRT is registered with ClinicalTrials.gov, NCT00310167, and the ISRCTN Registry, ISRCTN65687530, and this report represents the long-term follow-up. FINDINGS: Between April 7, 2006, and June 8, 2011, 614 target sites in 548 patients were randomly assigned either 24 Gy in 12 fractions (n=299) or 4 Gy in two fractions (n=315). At a median follow-up of 73·8 months (IQR 61·9-88·0), 117 local progression events were recorded, 27 in the 24 Gy group and 90 in the 4 Gy group. The 2-year local progression-free rate was 94·1% (95% CI 90·6-96·4) after 24 Gy and 79·8% (74·8-83·9) after 4 Gy; corresponding rates at 5 years were 89·9% (85·5-93·1) after 24 Gy and 70·4% (64·7-75·4) after 4 Gy (hazard ratio 3·46, 95% CI 2·25-5·33; p<0·0001). The difference at 2 years remains outside the non-inferiority margin of 10% at -13·0% (95% CI -21·7 to -6·9). The most common events at week 12 were alopecia (19 [7%] of 287 sites with 24 Gy vs six [2%] of 301 sites with 4 Gy), dry mouth (11 [4%] vs five [2%]), fatigue (seven [2%] vs five [2%]), mucositis (seven [2%] vs three [1%]), and pain (seven [2%] vs two [1%]). No treatment-related deaths were reported. INTERPRETATION: Our findings at 5 years show that the optimal radiotherapy dose for indolent lymphoma is 24 Gy in 12 fractions when durable local control is the aim of treatment. FUNDING: Cancer Research UK

    Clinical Development of Novel Drug-Radiotherapy Combinations.

    Get PDF
    Radiotherapy is a fundamental component of treatment for the majority of patients with cancer. In recent decades, technological advances have enabled patients to receive more targeted doses of radiation to the tumor, with sparing of adjacent normal tissues. There had been hope that the era of precision medicine would enhance the combination of radiotherapy with targeted anticancer drugs; however, this ambition remains to be realized. In view of this lack of progress, the FDA-AACR-ASTRO Clinical Development of Drug-Radiotherapy Combinations Workshop was held in February 2018 to bring together stakeholders and opinion leaders from academia, clinical radiation oncology, industry, patient advocacy groups, and the FDA to discuss challenges to introducing new drug-radiotherapy combinations to the clinic. This Perspectives in Regulatory Science and Policy article summarizes the themes and action points that were discussed. Intelligent trial design is required to increase the number of studies that efficiently meet their primary outcomes; endpoints to be considered include local control, organ preservation, and patient-reported outcomes. Novel approaches including immune-oncology or DNA-repair inhibitor agents combined with radiotherapy should be prioritized. In this article, we focus on how the regulatory challenges associated with defining a new drug-radiotherapy combination can be overcome to improve clinical outcomes for patients with cancer

    Chemosensitivity of radioresistant cells in the multicellular spheroids of A549 lung adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relapse of cancer after radiotherapy is a clinical knotty problem. Previous studies have demonstrated that the elevation of several factors is likely in some way to lead to the development of treatment tolerance, so it is necessary to further explore the problem of re-proliferated radioresistant cells to chemotherapeutic agents. In the present study, we aimed to investigate the chemosensitivity of radioresistant cells originated from the multicellular spheroids of A549 lung adenocarcinoma.</p> <p>Methods</p> <p>After irradiated with 25 Gy of 6 MV X-ray to A549 multicellular spheroids, whose 10th re-proliferated generations were employed as radioresistant cells, and the control groups were A549 parental cells and MCF7/VCR resistant cells. The chemo-sensitivity test was made by six kinds of chemotherapeutic drugs which were DDP, VDS, 5-Fu, HCP, MMC and ADM respectively, while verapamil (VPL) was used as the reversal agent. Then the treatment effect was evaluated by MTT assay, and the multidrug resistant gene expressions of <it>mdr1 </it>and <it>MRP </it>were measured by RT-PCR.</p> <p>Results</p> <p>Both A549 parental cells and A549 derived radioresistant cells were resistant to DDP, but sensitive to VDS, 5-Fu, HCP, MMC and ADM. The inhibitory rates of VPL to these two types of cell were 98% and 25% respectively (P < 0.001). In addition, without drugs added, the absorbance value (A value) of A549 parental cells was 2-folds higher than that of their radioresistant cells (P < 0.001). As to the MCF7/VCR cells, they were resistant to DDP and VDS, but slight sensitive to MMC, ADM, 5-Fu, and HCP with 80% of inhibitory rate to VPL. The subsequent RT-PCR demonstrated that the <it>Mdr1</it>/β2-MG and <it>MRP</it>/β2-MG of all A549 cells were about 0 and 0.7 respectively, and those of MCF7/VCR cells were 35 and 4.36.</p> <p>Conclusion</p> <p>The chemosensitivity of A549 radioresistant cells had not changed markedly, and the decreased sensitivity to VPL could not be explained by the gene expression of <it>mdr1 </it>and <it>MRP</it>. It is possible that the changes in the cell membrane and decreased proliferate ability might be attributed to the resistance. Unlike multidrug resistance induced by chemotherapy, VPL may be not an ideal reverser to radioresistant cells. Therefore, the new biological strategy needs to be developed to treat recurring radioresistant tumor in combination with chemotherapy.</p

    Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells

    Get PDF
    DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death

    Consensus guidelines for the definition, detection and interpretation of immunogenic cell death.

    Get PDF
    Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation

    Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naïve T-cell priming

    Get PDF
    Dendritic cells (DC) are professional antigen-presenting cells (APC) of the immune system, uniquely able to prime naïve T-cell responses. They are the focus of a range of novel strategies for the immunotherapy of cancer, a proportion of which include treating DC with ionising radiation to high dose. The effects of radiation on DC have not, however, been fully characterised. We therefore cultured human myeloid DC from CD14+ precursors, and studied the effects of ionising radiation on their phenotype and function. Dendritic cells were remarkably resistant against radiation-induced apoptosis, showed limited changes in surface phenotype, and mostly maintained their endocytic, phagocytic and migratory capacity. However, irradiated DC were less effective in a mixed lymphocyte reaction, and on maturation produced significantly less IL-12 than unirradiated controls, while IL-10 secretion was maintained. Furthermore, peptide-pulsed irradiated mature DC were less effective at naïve T-cell priming, stimulating fewer effector cells with lower cytotoxicity against antigen-specific targets. Hence irradiation of DC in vitro, and potentially in vivo, has a significant impact on their function, and may shift the balance between T-cell activation and tolerisation in DC-mediated immune responses

    Mifepristone prevents repopulation of ovarian cancer cells escaping cisplatin-paclitaxel therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced ovarian cancer is treated with cytoreductive surgery and combination platinum- and taxane-based chemotherapy. Although most patients have acute clinical response to this strategy, the disease ultimately recurs. In this work we questioned whether the synthetic steroid mifepristone, which as monotherapy inhibits the growth of ovarian cancer cells, is capable of preventing repopulation of ovarian cancer cells if given after a round of lethal cisplatin-paclitaxel combination treatment.</p> <p>Methods</p> <p>We established an <it>in vitro</it> approach wherein ovarian cancer cells with various sensitivities to cisplatin or paclitaxel were exposed to a round of lethal doses of cisplatin for 1 h plus paclitaxel for 3 h. Thereafter, cells were maintained in media with or without mifepristone, and short- and long-term cytotoxicity was assessed.</p> <p>Results</p> <p>Four days after treatment the lethality of cisplatin-paclitaxel was evidenced by reduced number of cells, increased hypodiploid DNA content, morphological features of apoptosis, DNA fragmentation, and cleavage of caspase-3, and of its downstream substrate PARP. Short-term presence of mifepristone either enhanced or did not modify such acute lethality. Seven days after receiving cisplatin-paclitaxel, cultures showed signs of relapse with escaping colonies that repopulated the plate in a time-dependent manner. Conversely, cultures exposed to cisplatin-paclitaxel followed by mifepristone not only did not display signs of repopulation following initial chemotherapy, but they also had their clonogenic capacity drastically reduced when compared to cells repopulating after cisplatin-paclitaxel.</p> <p>Conclusions</p> <p>Cytostatic concentrations of mifepristone after exposure to lethal doses of cisplatin and paclitaxel in combination blocks repopulation of remnant cells surviving and escaping the cytotoxic drugs.</p
    corecore